Сталь марки 30: характеристика заготовок согласно гост
Содержание:
Модуль упругости для разных марок стали
Металлурги разработали несколько сотен марок сталей. Им свойственны разные значения прочности. В таблице 2 показаны характеристики для наиболее распространенных сталей.
Таблица 2: Упругость сталей
Наименование материала | Значение модуля упругости, 10¹²·Па |
Алюминий | 65…72 |
Дюралюминий | 69…76 |
Железо, содержание углерода менее 0,08 % | 165…186 |
Латунь | 88…99 |
Медь (Cu, 99 %) | 107…110 |
Никель | 200…210 |
Олово | 32…38 |
Свинец | 14…19 |
Серебро | 78…84 |
Серый чугун | 110…130 |
Сталь | 190…210 |
Стекло | 65…72 |
Титан | 112…120 |
Хром | 300…310 |
Наименование стали | Значение модуля упругости, 10¹²·Па |
Сталь низкоуглеродистая | 165…180 |
Сталь 3 | 179…189 |
Сталь 30 | 194…205 |
Сталь 45 | 211…223 |
Сталь 40Х | 240…260 |
65Г | 235…275 |
Х12МФ | 310…320 |
9ХС, ХВГ | 275…302 |
4Х5МФС | 305…315 |
3Х3М3Ф | 285…310 |
Р6М5 | 305…320 |
Р9 | 320…330 |
Р18 | 325…340 |
Р12МФ5 | 297…310 |
У7, У8 | 302…315 |
У9, У10 | 320…330 |
У11 | 325…340 |
У12, У13 | 310…315 |
Видео: закон Гука, модуль упругости.
Общее понятие
Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).
В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.
Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.
Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.
Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.
Дополнительные характеристики механических свойств
Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:
- Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
- Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
- Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
- Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
- Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
- Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.
Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.
У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.
Физический смысл модуля Юнга
Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.
Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.
Виды деформации
Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.
В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:
Δl = α * (lF) / S
Величину, обратную α, и называют модулем Юнга:
1/α = E
Относительная деформация:
ε = (Δl) / l = α * (F/S)
Отношение растягивающей силы F к S называют упругим напряжением σ:
ε=α σ
Закон Гука, записанный с использованием модуля Юнга, выглядит так:
σ = ε/α = E ε
Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.
В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.
Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l
Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.
Применение
Сталь 30ХГСА, применение которой связано с химическим составом и основными качествами, встречается в различных отраслях промышленности. Чаще всего легированная сталь используется в нижеприведенных случаях:
- В строительной области получили большое распространение крепежные элементы, которые эксплуатируются при переменных нагрузках. Невысокая коррозионная стойкость определяет то, что крепежные материалы могут использоваться только при защите устройства.
- В авиастроении используется сплав в качестве расходного материала при изготовлении валов, фланцев и прочих деталей. Стоит учитывать, что сплав не используют при создании ответственных элементов.
- В машиностроительной области применяется при создании элементов, которые работают при постоянных или переменных нагрузках.
Стоимость используемого сырья во многом зависит от того, какой лом использовался. В продаже встречаются зарубежные аналоги, к примеру, 14331 (Чехия) и 30ChGSA (Болгария). Их химический состав и основные качества во многом схожи.
Химический состав
Стандарт | C | S | P | Mn | Cr | Si | Ni | Fe | Cu | V | Ti | Mo | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TУ 14-1-1885-85 | 0.27-0.33 | ≤0.011 | ≤0.015 | 1-1.2 | 0.9-1.2 | 0.9-1.2 | 1.4-1.8 | Остаток | ≤0.25 | — | — | — | — |
TУ 14-1-950-74 | 0.27-0.33 | ≤0.025 | ≤0.025 | 1-1.3 | 0.9-1.2 | 0.9-1.2 | 1.4-1.8 | Остаток | ≤0.25 | ≤0.05 | ≤0.03 | ≤0.15 | ≤0.2 |
ГОСТ 4543-71 | 0.27-0.34 | ≤0.025 | ≤0.025 | 1-1.3 | 0.9-1.2 | 0.9-1.2 | 1.4-1.8 | Остаток | ≤0.3 | ≤0.05 | ≤0.03 | ≤0.15 | ≤0.2 |
ГОСТ 21729-76 | 0.27-0.34 | ≤0.011 | ≤0.015 | 1-1.2 | 0.9-1.2 | 0.9-1.2 | 1.4-1.8 | Остаток | ≤0.2 | ≤0.05 | ≤0.03 | ≤0.15 | ≤0.2 |
TУ 14-3-674-78 | 0.28-0.34 | ≤0.005 | ≤0.025 | 0.8-1.1 | 0.8-1.1 | 0.9-1.2 | 1.8-2.1 | Остаток | — | — | — | — | — |
ГОСТ 11268-76 | 0.27-0.34 | ≤0.025 | ≤0.025 | 1-1.3 | 0.9-1.2 | 0.9-1.2 | 1.4-1.8 | Остаток | ≤0.25 | ≤0.05 | ≤0.03 | ≤0.15 | ≤0.2 |
Fe — основа.
По ГОСТ 4543-71 регламентировано содержание в особовысококачественной стали: P≤0,025%; S≤0,015%; Сu≤0,25%.
По ТУ 14-1-3238-81 для стали марки 30ХГСН2А-СШ (30ХГСНА-СШ) содержание S≤0,015%.
По ТУ 14-3-674-78 химический состав приведен для стали 30ХГСН2А-ВД.
По ГОСТ 21729-76 химический состав приведен для стали 30ХГСН2А-ВД; сталь марки 30ХГСН2А должна иметь химсостав в соответствии с ГОСТ 4543. При выплавке стали скаппроцессом массовая доля меди должна быть ≤ 0,25 % в сталях марок 30ХГСН2А и 30ХГСН2А-ВД. Предельные отклонения по химическому составу — в соответствии с ГОСТ 4543. Для стали марки 30ХГСН2А-ВД суммарная массовая доля серы и фосфора не должна превышать 0,22 %.
По ТУ 14-1-1885-85 химический состав приведен для стали 30ХГСН2А-ВД. В стали сумма содержания фосфора и серы не должна превышать 0,022 %. Для обеспечения требуемой величины зерна разрешается при выплавке стали вводить ванадий из расчета содержания его в стали не более 0,10 %, содержание которого в стали не определяется. Наличие вольфрама до 0,20 %, молибдена до 0,15 %, титана до 0,030 % не является браковочным признаком. Допустимое отклонение по содержанию марганца в стали +0,010/-0,020 %, по содержанию углерода +0,010 %, по содержанию серы и фосфора при условии их суммарного содержания не более 0,022 %. Для стали, аттестованной Знаком качества содержание серы в стали не должно превышать 0,010 %, при этом допускаются отклонения от содержания серы и фосфора в стали, при условии их суммарного содержания не более 0,021 %.
Стандарты
Название | Код | Стандарты |
---|---|---|
Сортовой и фасонный прокат | В32 | ГОСТ 1051-73, ГОСТ 4543-71, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 14955-77, TУ 14-1-1885-85, TУ 14-1-2118-77, TУ 14-1-2213-77, TУ 14-1-658-73, TУ 14-1-950-74, TУ 1-9-30-82, TУ 14-1-4247-87, TУ 14-1-4020-85, TУ 14-1-3238-81, TУ 14-11-245-88, TУ 14-1-3238-2006, TУ 14-136-367-2008 |
Листы и полосы | В33 | ГОСТ 11268-76, ГОСТ 11269-76, TУ 14-1-3422-82 |
Сортовой и фасонный прокат | В22 | ГОСТ 1133-71, ГОСТ 8319.0-75, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006, TУ 1-9-1046-79 |
Трубы стальные и соединительные части к ним | В62 | ГОСТ 21729-76, TУ 14-3-674-78, TУ 14-3-675-78 |
Листы и полосы | В23 | ГОСТ 82-70, ГОСТ 103-2006 |
Классификация, номенклатура и общие нормы | В20 | ОСТ 1 90005-91 |
Болванки. Заготовки. Слябы | В31 | ОСТ 3-1686-90, TУ 14-1-4944-90, TУ 14-1-4992-91, TУ 1-92-156-90 |
Нормы расчета и проектирования | В02 | ПИ 1.2.053-78 |
Таблица показателей упругости материалов
Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.
Модуль упругости различных материалов
Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.
После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.
Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:
- Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
- Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
- Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
- Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
- Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
- Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
- И напоследок коэффициент Пуассона для стали равен значению 0,3
Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.
Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).
Сталь и несколько разных её марок
Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.
Кстати, если не выражать все значения числовыми отношениями, а взять сразу и пос, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.
Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.
Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.
Это интересно: Молибден — свойства, формула, применение элемента и сплавы на его основе
Факторы, влияющие на упругость
Чтобы понять, от чего зависит модуль упругости бетона В25, В20, В15 и других классов, нужно рассмотреть все причины. На эту величину влияет очень много факторов, но самыми распространенными являются:
- Свойства наполнителя. Если изделие имеет низкую плотность, то и модуль упругости у него небольшой. При использовании тяжелых наполнителей упругость возрастает в несколько раз.
- Классность. Чем выше класс, тем больше и упругость. Например, модуль упругости В30 равен 32,5, а у класса В10 он составляет всего лишь 19.
- Продолжительность использования. Бетонные конструкции становятся крепче со временем, поэтому специалисты используют таблицы для таких целей.
- Особенности производства. В процессе изготовления могут использоваться разные обработки бетона. Некоторые применяют высокую температуру и давление. Другие же проводят обработку при атмосферном давлении и дают строительному материалу затвердевать естественным путем. Все эти особенности изготовления напрямую влияют на показатель прочности и упругости.
- Время нахождения под давлением и нагрузкой. Для расчета используются специальные таблицы, из которых берется значение и умножается на корректирующий коэффициент.
- Влажность воздуха. Температура и влажность также влияют на значение упругости.
- Арматура. Использование стальной арматуры помогает противостоять различным нагрузкам и сопротивляться деформациям. Необходимые значения находятся в нормативных документах.