Перевод единиц плотности. конвертер величин

Общие сведения

Плотность — свойство, которое определяет какое количество вещества по массе приходится на единицу объема. В системе СИ плотность измеряют в кг/м³, но также используются и другие единицы, например г/см³, кг/л и другие. В обиходе наиболее часто используют две равнозначные величины: г/см³ и кг/мл.

Факторы, влияющие на плотность вещества

Плотность одного и того же вещества зависит от температуры и давления. Обычно, чем выше давление, тем более плотно утрамбованы молекулы, что увеличивает плотность. В большинстве случаев увеличение температуры, наоборот, увеличивает расстояние между молекулами и уменьшает плотность. В некоторых случаях эта зависимость — обратная. Плотность льда, например, меньше плотности воды, несмотря на то, что лед холоднее воды. Объяснить это можно молекулярной структурой льда. Многие вещества, при переходе от жидкого к твердому агрегатному состоянию меняют молекулярную структуру так, что расстояние между молекулами уменьшается, и плотность, соответственно, увеличивается. Во время образования льда, молекулы выстраиваются в кристаллическую структуру и расстояние между ними, наоборот, увеличивается. При этом притяжение между молекулами также изменяется, плотность уменьшается, а объем увеличивается. Зимой необходимо не забывать про это свойство льда — если вода в водопроводных трубах замерзает, то их может разорвать.

Лед плавает на границе между водой и менее плотным изопропиловым спиртом, окрашенным синим цветом.

Вычисление плотности

Часто плотность веществ указывают для стандартных условий, то есть для температуры 0 °C и давления 100 кПа. В учебных и справочных пособиях обычно можно найти такую плотность для веществ, часто встречающихся в природе. Некоторые примеры приведены в таблице ниже. В некоторых случаях таблицы недостаточно и плотность необходимо вычислить вручную. В этом случае массу делят на объем тела. Массу легко найти с помощью весов. Чтобы узнать объем тела стандартной геометрической формы, можно использовать формулы для вычисления объема. Объем жидкостей и сыпучих веществ можно найти, наполнив веществом измерительную чашку. Для более сложных вычислений используют метод вытеснения жидкости.

Метод вытеснения жидкости

Для вычисления объема таким способом, сначала наливают определенное количество воды в мерный сосуд и помещают до полного погружения тело, объем которого необходимо вычислить. Объем тела равен разности объема воды без тела, и с ним. Считается, что это правило вывел Архимед. Измерить объем таким способом можно только в том случае, если тело не поглощает воду и не портится от воды. Например, мы не станем измерять методом вытеснения жидкости объем фотоаппарата или изделий из ткани.

Неизвестно, насколько эта легенда отражает реальные события, но считается, что царь Гиерон II дал Архимеду задание определить, сделана ли его корона из чистого золота. Царь подозревал, что его ювелир украл часть золота, выделенного на корону, и вместо этого сделал корону из более дешевого сплава. Архимед мог легко определить этот объем, расплавив корону, но царь приказал ему найти способ сделать это, не повредив короны. Считается, что Архимед нашел решение этой задачи, когда принимал ванну. Погрузившись в воду он заметил, что его тело вытеснило определенное количество воды, и понял, что объем вытесненной воды равен объему тела в воде.

Полые тела

Некоторые природные и искусственные материалы состоят из полых внутри частиц, или из частиц настолько маленьких, что эти вещества ведут себя как жидкости. Во втором случае, между частицами остается пустое место, заполненное воздухом, жидкостью, или другим веществом. Иногда это место оставаться пустым, то есть оно заполнено вакуумом. Пример таких веществ — песок, соль, зерно, снег и гравий. Объем таких материалов можно определить, измерив общий объем и вычтя из него определенный геометрическими вычислениями объем пустот. Этот способ удобен, если форма частиц более-менее однородна.

Для некоторых материалов количество пустого места зависит от того, насколько плотно утрамбованы частицы. Это усложняет вычисления, так как не всегда легко определить, сколько пустого места между частицами.

Таблица плотностей часто встречающихся в природе веществ

Вещество Плотность, г/см³
Жидкости
Вода при температуре 20 °C 0,998
Вода при температуре 4 °C 1,000
Бензин 0,700
Молоко 1,03
Ртуть 13,6
Твердые вещества
Лед при температуре 0°C 0,917
Магний 1,738
Алюминий 2,7
Железо 7,874
Медь 8,96
Свинец 11,34
Уран 19,10
Золото 19,30
Платина 21,45
Осмий 22,59
Газы при нормальных температуре и давлении
Водород 0,00009
Гелий 0,00018
Монооксид углерода 0,00125
Азот 0,001251
Воздух 0,001293
Углекислый газ 0,001977

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Метрическая система

грамм на кубический сантиметр → тонна на кубометр
(т/м³)
грамм на кубический сантиметр → килограмм на кубометр
(кг/м³)
грамм на кубический сантиметр → грамм на кубометр
(г/м³)
грамм на кубический сантиметр → миллиграмм на кубометр
(мг/м³)
грамм на кубический сантиметр → килограмм на литр
(кг/л)
грамм на кубический сантиметр → грамм на литр
(г/л)
грамм на кубический сантиметр → миллиграмм на литр
(мг/л)
грамм на кубический сантиметр → килограмм на кубический дециметр
(кг/дм³)
грамм на кубический сантиметр → грамм на кубический дециметр
(г/дм³)
грамм на кубический сантиметр → миллиграмм на кубический дециметр
(мг/дм³)
грамм на кубический сантиметр → килограмм на кубический сантиметр
(кг/см³)
грамм на кубический сантиметр → грамм на кубический сантиметр
(г/см³)
грамм на кубический сантиметр → миллиграмм на кубический сантиметр
(мг/см³)
грамм на кубический сантиметр → килограмм на миллилитр
(кг/мл)
грамм на кубический сантиметр → грамм на миллилитр
(г/мл)
грамм на кубический сантиметр → миллиграмм на миллилитр
(мг/мл)

Единицы:

тонна на кубометр
(т/м³)

 /
килограмм на кубометр
(кг/м³)

 /
грамм на кубометр
(г/м³)

 /
миллиграмм на кубометр
(мг/м³)

 /
килограмм на литр
(кг/л)

 /
грамм на литр
(г/л)

 /
миллиграмм на литр
(мг/л)

 /
килограмм на кубический дециметр
(кг/дм³)

 /
грамм на кубический дециметр
(г/дм³)

 /
миллиграмм на кубический дециметр
(мг/дм³)

 /
килограмм на кубический сантиметр
(кг/см³)

 /
грамм на кубический сантиметр
(г/см³)

 /
миллиграмм на кубический сантиметр
(мг/см³)

 /
килограмм на миллилитр
(кг/мл)

 /
грамм на миллилитр
(г/мл)

 /
миллиграмм на миллилитр
(мг/мл)

 открыть 

 свернуть 

Британские и американские единицы

грамм на кубический сантиметр → фунты на кубический ярд
(lb/yd³)
грамм на кубический сантиметр → фунты на кубический фут
(lb/ft³)
грамм на кубический сантиметр → фунты на кубический дюйм
(lb/in³)
грамм на кубический сантиметр → фунты на галлон США
(lb/gal)
грамм на кубический сантиметр → фунты на британский галлон
грамм на кубический сантиметр → фунты на бушель США
грамм на кубический сантиметр → унции на кубический ярд
(oz/yd³)
грамм на кубический сантиметр → унции на кубический фунт
(oz/ft³)
грамм на кубический сантиметр → унции на кубический дюйм
(oz/in³)
грамм на кубический сантиметр → унции на галлон США
(oz/gal)
грамм на кубический сантиметр → унции на британский галлон
грамм на кубический сантиметр → унции на бушель США

Единицы:

фунты на кубический ярд
(lb/yd³)

 /
фунты на кубический фут
(lb/ft³)

 /
фунты на кубический дюйм
(lb/in³)

 /
фунты на галлон США
(lb/gal)

 /
фунты на британский галлон

 /
фунты на бушель США

 /
унции на кубический ярд
(oz/yd³)

 /
унции на кубический фунт
(oz/ft³)

 /
унции на кубический дюйм
(oz/in³)

 /
унции на галлон США
(oz/gal)

 /
унции на британский галлон

 /
унции на бушель США

 открыть 

 свернуть 

Английские инжернерные и британские гравитационные единицы

грамм на кубический сантиметр → Слаг на кубический ярд
(slug/yd³)
грамм на кубический сантиметр → Слаг на кубический фут
(slug/ft³)
грамм на кубический сантиметр → Слаг на кубический дюйм
(slug/in³)

Единицы:

Слаг на кубический ярд
(slug/yd³)

 /
Слаг на кубический фут
(slug/ft³)

 /
Слаг на кубический дюйм
(slug/in³)

 открыть 

 свернуть 

Естественнные единицы

В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

грамм на кубический сантиметр → планковская плотность
(L⁻³M)

Единицы:

планковская плотность
(L⁻³M)

 открыть 

 свернуть 

Плотности различных веществ

Это лишь несколько примеров. Все плотности даны для стандартных условий температур и давления.

грамм на кубический сантиметр → плотность воздуха на уровне моря
грамм на кубический сантиметр → плотность воды при 0°C
грамм на кубический сантиметр → плотность воды при 4°C
грамм на кубический сантиметр → плотность воды при 100°C
грамм на кубический сантиметр → плотность льда
грамм на кубический сантиметр → плотность алмаза
грамм на кубический сантиметр → плотность железа
грамм на кубический сантиметр → плотность меди
грамм на кубический сантиметр → плотность серебра
грамм на кубический сантиметр → плотность свинца
грамм на кубический сантиметр → плотность золота
грамм на кубический сантиметр → плотность платины

Единицы:

плотность воздуха на уровне моря

 /
плотность воды при 0°C

 /
плотность воды при 4°C

 /
плотность воды при 100°C

 /
плотность льда

 /
плотность алмаза

 /
плотность железа

 /
плотность меди

 /
плотность серебра

 /
плотность свинца

 /
плотность золота

 /
плотность платины

Плотность и масса

В самолетах часто используют композиционные материалы вместо чистых металлов, так как в отличие от металлов, такие материалы имеют высокую упругость при малом весе. Воздушные винты этого самолета Bombardier Q400 изготовлены полностью из композиционных материалов.

В некоторых отраслях, например в авиации, необходимо использовать как можно более легкие материалы. Так как материалы низкой плотности также имеют низкую массу, в таких ситуациях стараются использовать материалы с наименьшей плотностью. Так, например, плотность алюминия всего 2,7 г/см³, в то время как плотность стали равна от 7,75 до 8,05 г/см³. Именно благодаря низкой плотности в 80% корпуса самолетов используют алюминий и его сплавы. Конечно, при этом стоит не забывать о прочности — сегодня мало кто делает самолеты из дерева, кожи, и других легких но малопрочных материалов.

В самолетах часто используют композиционные материалы вместо чистых металлов, так как в отличие от металлов, такие материалы имеют высокую упругость при малом весе. Воздушные винты этого самолета Bombardier Q400 изготовлены полностью из композиционных материалов.

Художественное изображение черной дыры, выполненное Американским ведомством НАСА.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector